
52 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 4 / $ 3 1 . 0 0 © 2 0 1 4 I E E E

FOCUS: PROGRAMMING LANGUAGES

Programming
with Implicit
Flows
Guido Salvaneschi, Technische Universität Darmstadt

Mira Mezini, Technische Universität Darmstadt
and Lancaster University

Patrick Eugster, Purdue University and Technische
Universität Darmstadt

// Modern software increasingly processes massive

amounts of data, which has led to the emergence of

advanced programming models. In these models,

the software engineer declaratively defines

computations as compositions of other computations

without explicitly modeling how the data should

flow along dependency relations, letting the runtime

automatically manage and optimize data flows. //

WE’VE COME A LONG WAY from
painstakingly feeding problem data-
sets into computer systems via punch
cards. Computer systems have be-
come much more convenient to inter-
act with and are able to process much
larger datasets, which are often kept
in large-scale storage systems. How-
ever, computer systems are also

much more commonly involved in
processing data that’s produced or
modified online as the program exe-
cutes, sometimes perpetually. This is
particularly the case for applications
specifically developed to react to
real-world events, such as tempera-
ture changes or other environmental
cues captured through sensors.

The last decade has thus seen the
advent of abstractions and para-
digms that support the develop-
ment of reactive software. Central
to such approaches is the concept
of events that capture the dynamic
occurrences that trigger computa-
tions. Over the years, several steps
have been made in this direction,
including language-level support for
events, continuous time-changing
values (signals or behaviors), con-
straints, asynchronous execution,
and futures. The ever-increasing
complexity of reactive applications
has recently raised new interest
around these abstractions.

The new paradigm of reactive
programming focuses on a more
hol istic view that demands seamless
integration of existing solutions, in-
cluding constraints resolution to en-
force functional dependencies, auto-
matic updates of dependent values,
and interoperability among differ-
ent reactive abstractions such as sig-
nals and event streams. The goal is
to raise the abstraction level: rather
than explicitly reifying events in the
software, changes to variable values
are detected and propagated through
programs by re-computing the val-
ues of all dependent variables implic-
itly during runtime. Interestingly, a
similar trend can be observed in re-
cent big data analysis software. Not
too long ago, such programs were
typically perceived as resembling
complex queries applied to very large
yet static datasets.

Researchers and practitioners
have proposed a host of program-
ming languages and models for
such programs, which tend to mix
imperative and declarative traits
to expose the order of a non-cyclic
computation network and are cen-
tered on some form of data structure
conceptualizing the current state of

s5sal.indd 52 8/7/14 1:41 PM

 SEPTEMBER/OCTOBER 2014 | IEEE SOFTWARE 53

computation. Despite improvements
in running time of such analysis pro-
grams, their execution can still take
sufficiently long to make repeated
complete executions of the same pro-
gram upon additions or changes to
the underlying datasets prohibitively
expensive. Consequently, recent im-
provements consist of enabling in-
cremental computations—that is, re-
executing only those parts of queries
that become invalid or incomplete by
dataset changes.

Although reactive and big data
analysis applications have little in
common at first glance, we observe
a shared trend in their respective
programming models: they strive to
capture what the computation ought
to do but not when (or how) because
the data is subject to computation
changes over time (thus we speak
of “data flows”). The execution en-
gines and language runtimes increas-
ingly carry the burden of determin-
ing which parts of computations are
affected by which fluctuations in the
processed data. As it’s unlikely that
runtime systems can determine these
things entirely on their own—at least
efficiently—or that such transpar-
ency would even serve the program-
mer, new abstractions are needed to
capture such implicit flows in addi-
tion to underlying runtime support.

Events and Reactive
Programming
Events are a common way for pro-
grammers to reason about significant
conditions in both the environment
and the program’s execution. Main-
stream languages have supported
dedicated abstractions for events
for a long time. For example, in C#
events are class attributes that belong
to the class’s interface, in addition
to methods and fields. Over the last
few years, researchers have proposed

increasingly sophisticated event mod-
els; see the “Advanced Programming
with Events” sidebar for examples.

Integration into the object-
oriented (OO) programming model
has been enhanced to extend OO
concepts such as inheritance to
events and event handling. Early ap-
proaches like JavaPS implemented
events as specific objects.1 In EScala,
events are first-class entities: as in

C#, they’re object attributes, just like
methods and fields, and their defini-
tion is subject to polymorphic access
and late binding.2 Our investigations
show that this is highly valuable,
enabling programmers to encode a
class’s behavior as a state machine
and extend it at this high level of ab-
straction rather than at the level of
individual methods.3

Events in isolation improve lit-
tle over the observer design pat-
tern. The difference becomes crucial
when expressive operators for event
combination are available to corre-
late events to define new (complex)
events that capture high-level situa-
tions of interest. Advanced systems
support operators to combine events
with increasing levels of expres-
siveness. For example, the e1||e2 ex-
pression in EScala returns an event
that fires when either e1 or e2 fire.
Full-fledged embeddings of complex
event processing such EventJava,4 or
stream-processing languages such as
SPL,5 support complex queries over
event streams, including time win-
dows and joins.

In parallel to the development of
richer event models, other research-
ers have focused on more inher-
ent data-flow and change-driven
solutions for reactive applications.
These approaches have old roots.
For example, the Garnet and Amu-
let graphical toolkits support auto-
matic constraint resolution to re-
lieve the programmer from manual
updates of the view.6 In functional

reactive programming (FRP), devel-
opers specify the functional depen-
dencies among time-changing val-
ues in a reactive application, and the
language runtime is responsible for
performing the necessary updates
(see the “Reactive Programming and
Languages” sidebar).7 FRP was de-
veloped in the strict functional lan-
guage Haskell and initially applied
to graphical animations; to date, re-
searchers have applied it to several
fields, including robotics and wire-
less sensor networks.

The fundamental concept in re-
active languages is that program-
mers don’t directly handle the
control flow—rather, execution is
driven by the implicit flow of data
and the need to update values.
Programmers specify constraints
that express functional dependen-
cies among values in the applica-
tion, and the language runtime
enforces these constraints without
any further effort on the program-
mer’s part.

More recently, these approaches
have inspired many embeddings of

Events in isolation improve little
over the observer design pattern.

s5sal.indd 53 8/7/14 1:41 PM

54 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: PROGRAMMING LANGUAGES

domain-specific languages (DSLs)
and functional constraints in existing
(imperative) programming languages.
The advantage of this solution is that
programmers specify a functional

dependency in an intuitive, declara-
tive way. Consequently, reactions are
directly expressed, don’t need to be
inferred from the control flow, and
can be easily composed.

In practice, continuous time-
changing values—also known as sig-
nals—aren’t enough. The need for
events (discrete time-changing values)
is explained by two observations:

ADVANCED PROGRAMMING WITH EVENTS
Event-based languages include Join Java,1 which captures
events by specific asynchronous methods and supports join-
ing of multiple events, and Ptolemy,2 which supports features
known from aspect-oriented programming (AOP).3 In AOP,
advices are triggered at points in the program’s execution (for
example, the end of a method call) that are referred to as join
points, which can be seen as events that occur during the ex-
ecution and treated uniformly with other events. For example,
EScala before(method) and after(method) events are triggered
before and after a method’s execution. Also, in event-based
languages that integrate AOP features, programmers can refer
to all events of a certain type, a feature that resembles AOP
quantification. As an example of an expressive event system,
look at the following slice of a drawing application in EScala:

1 abstract class Figure { ...
2 protected evt moved[Unit] = after(moveBy)
3 evt resized[Unit]
4 evt changed[Unit] = resized | | moved | | after(setColor)
5 evt invalidated[Rectangle] = changed.map(() => getBounds())
6 ...
7 def moveBy(dx: Int, dy: Int) { position.move(dx, dy) }
8 def setColor(col: Color) { color = col }
9 def getBounds(): Rectangle
10 ...
11 }
12 class Rectangle extends Figure {
13 evt resized[Unit] = after(resize) | | after(setBounds)
14 override evt moved[Unit] = super.moved | | after(setBounds)
15 ...
16 def resize(size: Size) { this.size = size }
17 def setBounds(x1: Int, y1: Int, x2: Int, y2: Int) { ... }
18 }

Implicit events, such as after(moveBy) in the Figure class,
are automatically triggered at the end of the associated meth-
od’s execution (moveBy, in this case). Events can be defined
declaratively by event expressions: the event changed is trig-
gered when one of the events resized, moved, or after(setColor)
is triggered. EScala events integrate with objects in several
ways. Events support visibility modifiers, and abstract events,
such as resized, can be refined in subclasses. Events can be

overridden in subclasses (such as moved), and the inherited
definitions can be accessed by super. Events are late-bound:
in the expression f.changed, the definition of changed in Figure
or in Rectangle can be picked up depending on the dynamic
type of f.

JEScala extends EScala to include asynchronous events
and joins such as Join Java and EventJava.4 Join expressions
fire an event after two or more events combined by & occur
in any order. Multiple joins can be combined in disjunctions
using the | operator; when multiple joins fire inside the same
disjunction, one is chosen non-deterministically. Joins offer
an alternative to thread-based concurrency. In the following
Actor example, messages are asynchronous events (Lines
2-3); a disjunction (Line 9) ensures that a single message is
processed at a time:

1 class Actor {
2 async evt helloMsg[Unit] = ...
3 async evt byeMsg[Unit] = ...
4
5 sync evt threadReady[Unit]
6 async evt start[Unit]
7 start += {while(true){threadReady()}}
8
9 evt (doHelloMsg,doByeMsg) = (threadReady & helloMsg)
10 | (threadReady & byeMsg)
11 doHelloMsg += { println(“Hello”) }
12 doByeMsg += ...
13 }

References
 1. S.V. Itzstein and D. Kearney, “The Expression of Common Concur-

rency Patterns in Join Java,” Proc. Int’l Conf. Parallel and Distributed
Processing Techniques and Applications, 2004, pp. 1021–1025.

 2. H. Rajan and G.T. Leavens, “Ptolemy: A Language with Quantified,
Typed Events,” Proc. 22nd European Conf. Object-Oriented Program-
ming, 2008, pp. 155–179.

 3. G. Kiczales et al., “Aspect-Oriented Programming,” Proc. 11th Euro-
pean Conf. Object-Oriented Programming, 1997, pp. 220–242.

 4. J.M. Van Ham et al., “JEScala: e Modular Coordination with Declara-
tive Events and Joins,” Proc. 13th Int’l Conf. Modularity, 2014, pp.
205–216.

s5sal.indd 54 8/7/14 1:41 PM

 SEPTEMBER/OCTOBER 2014 | IEEE SOFTWARE 55

• Events come from external
phenomena that are inherently
discrete, such as an interrupt or
new data from a sensor.

• Events are better suited for
modeling certain behaviors. In
principle, a mouse click can be
modeled as a Boolean continu-
ous time-changing value that
switches to true when the mouse
is clicked, but most program-
mers would rather think of a
mouse click as an event. For this
reason, existing reactive lan-
guages provide both signals and
events.

Reactive programming is an
emerging trend, and identifying the
boundaries of this field is hard. How-
ever, the following principles seem
valid in general:

• Declarative style. Reactive
behavior is defined in a direct,
convenient, declarative style
instead of encoding it in design
patterns or through imperative
updates of program state. Reac-
tions are directly expressed and
don’t need to be encoded into
the program’s control flow.

• Composition. Abstractions al-
low for composition of more
complex reactions. Traditional
OO applications express re-
actions in callbacks that are
executed when an observable
changes. However, callbacks
typically have side effects
that modify the application’s
state but don’t return a value.
Consequently, they’re hard to
combine. Instead, events can be
combined through combinators,
and signals can be combined
directly into more complex reac-
tive expressions.

• Automation. Programmer

effort is reduced by delegating
the responsibility of reacting to
changes in program state and
updating corresponding enti-
ties to language runtime. This
solution has several advantages.
Reactive code is less error-prone

because programmers don’t
forget to update dependen-
cies (which introduce incon-
sistencies) and don’t update
defensively, independently of
necessity (which wastes compu-
tational resources). In addition,
automation enables optimi-
zation and more automated
memory management.

• Interoperability. Different reac-
tive abstractions can interop-
erate. Converting events into
signals and back has an impor-
tant role in practice. Several
existing OO applications model
state as object fields that are
imperatively updated. Conver-
sions allow programmers to take
advantage of the design based
on signals while still preserving
compatibility with the exist-
ing nonfunctional code and
the event-based design of many
applications.

These principles—centered on the
concept of implicit flows—highlight
a significant similarity between reac-
tive programming and big data anal-
ysis. The similarities between the two
domains open perspectives for soft-
ware that combine both paradigms.

Big Data Analysis
Technologies spearheaded by
Google’s efforts such as the Google
file system (GFS) or the distributed
implementation of the MapReduce
framework originally introduced
in the Lisp programming language

have ushered in a new era of scalable
computing.8 Through Apache’s open
source versions of such systems, bun-
dled under the name Hadoop, these
technologies have become widely
available; they’re currently consid-
ered part of the standard toolkit for
programming with big data. GFS
and the Hadoop distributed file sys-
tem (HDFS) achieve scalability es-
sentially by restricting write opera-
tions on files from arbitrary updates
to append-only writes. HDFS serves
as the default storage medium for
data handled by Hadoop MapRe-
duce or for results created by the
same. With a distributed file system
used between MapReduce tasks,
multiple individual local disks used
between the map and reduce phases
of such tasks, and several mappers
and reducers splitting the workload,
the MapReduce toolchain can scale
to very large input files.

To ease the burden on program-
mers, several high-level scripting
and programming languages and
language extensions have been in-
troduced, exposing data flow to par-
allelization. They view programs
as directed acyclic graphs (DAGs),
with edges representing the flow of
data and nodes representing (sets

Reactive programming
is an emerging trend, and identifying

the boundaries of this field is hard.

s5sal.indd 55 8/7/14 1:41 PM

56 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: PROGRAMMING LANGUAGES

of) operations involving data from
their incoming edges and results be-
ing passed onto outgoing edges. Pig
Latin, an untyped scripting language
from Yahoo, is a popular example of
such a language. Hadoop Pig imple-
ments it on top of Hadoop MapRe-
duce.9 Languages such as Pig Latin
can express data analysis jobs across
domains like science and engineer-
ing, business and finance, and gov-
ernment and defense. In correspond-
ing programs, intermediate state is
typically incarnated by various types
of data structures or collections rep-
resenting large datasets (see the “Pro-
gramming with Big Data” sidebar).

In general, languages for big
data analysis roughly build on two
abstractions:

• Data structures. The state of a
DAG-based computation at a
particular point in the DAG con-
sists of intermediate data, which
is conceptualized by a data
structure. Data constraints and
characteristics (ordering, index-
ing) are captured through data
structure choice (bag versus set,
set versus associative map, and so
on). Pig Latin, for example, lever-
ages bags and maps, while others
propose collections and tables.

• Operations and functions. Com-
putation itself is expressed via
operations more typical of rela-
tional query models (filter, group,
join) or functions (max, min,
avg), which are applied to data
structures; results are typically
represented as data structures.

When data analysis programs
or subprograms are translated to
MapReduce jobs, the actual data
structures will never be incarnated as
such in a given process’s address space
or even across several such address
spaces; these data structures serve
uniquely as conceptual abstractions.

REACTIVE PROGRAMMING
AND LANGUAGES
Reactive programming is based on constraints enforced by
the runtime. Consider a functional dependency among the
variables a, b, and c such that a = b + c:

1 a = 2
2 b = 3
3 c = a + b
4 a = 4 // c is still 5
5 c = a + b // c = 7

1 a = 2
2 b = 3
3 c := a + b // Constraint
4 a = 4 // c = 7

In imperative programming (left), the functional
dependency is true only immediately after the execution of
the statement in Line 3. As soon as a change occurs, the
functional dependency is no longer valid and must be updated
manually (Line 5). Reactive languages (right) automatically
enforce constraints (Line 3), recomputing functional
dependencies when they aren’t valid anymore.

As an illustration of more explicit use of constraints,
consider the following minimal GUI application in the REScala
reactive language.1 The application counts the number of
mouse clicks on a button, displays the result, and changes
the button label when counting starts. In REScala, signals
express functional dependencies in a declarative style.
The traditional design without reactive programming for
such an application adopts the observer design pattern. An
implementation (simplified for the presentation) using the
Scala Swing libraries looks as follows:

1 /* Create the graphics */
2 title = “Reactive Swing App”
3 val button = new Button {
4 text = “Click me!”
5 }
6 val label = new Label {
7 text = “No button clicks registered”
8 }
9 contents = new BoxPanel(Orientation.Vertical) {
10 contents += button
11 contents += label
12 }
13 /* The logic */
14 listenTo(button)
15 var nClicks = 0
16 reactions += {
17 case ButtonClicked(b) =>
18 nClicks += 1
19 label.text = “Number of button clicks: “ + nClicks
20 if (nClicks > 0)
21 button.text = “Click me again”
22 }

The previous code requires inspecting the whole control
flow to understand the update logic. For example, the text
over the button is initialized in Line 4 and assigned in the
statement in Line 21, which is conditionally executed based
on variable nClicks, modified in Line 18. In the reactive
programming version using REScala, the whole update logic
is captured in Lines 5-11:

s5sal.indd 56 8/7/14 1:41 PM

 SEPTEMBER/OCTOBER 2014 | IEEE SOFTWARE 57

Restricting big data analysis and
processing to computations that can
be represented as DAGs is a strong
limitation. Two major extensions of
the computational model promoted
by MapReduce and its associated
early high-level languages address
this limitation:

• Incremental computation.
Support for such computation
avoids making changes to input
re-executing entire programs.
Incremental computation is par-
ticularly sensible in the context
of big data—many applications
operate on input datasets such

as logs, client activity records, or
user records that are constantly
extended. Based on the append-
only semantics for many such
files (by virtue of the distrib-
uted file system), extensions to
datasets are naturally captured
through stratified appendages.

• Iterative computation. Support
for cycles during computation
allows for a far more expres-
sive computing model and is
especially relevant in big data
processing, where due to sheer
data size, “one-shot” solutions
are impossible and computations
are iterated until they converge

satisfactorily. A popular ex-
ample is Google’s page rank for
determining webpage popularity,
which originally motivated Map-
Reduce. Other examples include
machine-learning algorithms
such as logistic regression.

Based on these needs, recent pro-
gramming models aim to support it-
erative or incremental computing, or
both. To that end, datasets are kept
in main memory and partitioned
across the various nodes necessary
to accommodate them, thus mak-
ing cross-accesses for updates much
faster than on stored files.

1 title = “Reactive Swing App”
2 val label = new ReactiveLabel
3 val button = new ReactiveButton
4
5 val nClicks = button.clicked.count
6 label.text = Signal{
7 (if (nClicks() == 0) “No”
8 else nClicks()) + “ button clicks registered” }
9 button.text = Signal{
10 “Click me” + (if (nClicks() == 0) “!”
11 else “ again “) }
12 contents = new BoxPanel(Orientation.Vertical) {
13 contents += button
14 contents += label
15 }

In reactive languages, conversions between signals
and events assume great importance. Conversions let you
introduce signal-based (declarative) code into object-oriented
event-based applications, abstract over state, and concisely
express reactive computations.

The following REScala code snippet uses the snapshot
conversion function to combine a signal that holds the
current mouse position and a click event from the mouse. As
a result, the snapshot returns a signal that holds the position
of the last mouse click. The other example demonstrates
the last(n) function, which holds a list of the last n values
associated to an event stream. Here, last(n) computes the
average in a sliding window of five values over a stream of
events carrying integers:

1 val clicked: Event[Unit] = mouse.clicked
2 val position: Signal[(Int,Int)] = mouse.position
3 val lastClick: Signal[(Int,Int)] = position snapshot clicked

1 val e = new ImperativeEvent[Double]
2 val window = e.last(5)
3 val mean = Signal { window().sum / window().length }
4 mean.changed += { println(_) }

Other reactive languages include FrTime,2 Flapjax,3 and
Scala.React.4 Currently, reactive languages are being extend-
ed to support automated propagation of individual elements
of nontrivial data structures (lists5) or to distribution of reac-
tive values over many nodes.6

References
 1. G. Salvaneschi, G. Hintz, and M. Mezini, “REScala: Bridging between

Object-Oriented and Functional Style in Reactive Applications,” Proc.
13th Int’l Conf. Modularity, 2014, pp. 25–36.

 2. G.H. Cooper and S. Krishnamurthi, “Embedding Dynamic Dataflow in
a Call-by-Value Language,” Proc. 15th European Conf. Programming
Languages and Systems, 2006, pp. 294–308.

 3. L.A. Meyerovich et al., “Flapjax: A Programming Language for
Ajax Applications,” Proc. 24th ACM SIGPLAN Conf. Object-Oriented
Programming Systems Languages and Applications, 2009, pp. 1–20.

 4. I. Maier and M. Odersky, “Deprecating the Observer Pattern with
Scala.react,” EPFL-REPORT-176887, 2012.

 5. I. Maier and M. Odersky, “Higher-Order Reactive Programming
with Incremental Lists,” Proc. 27th European Conf. Object-Oriented
Programming, 2013, pp. 707–731.

 6. G. Salvaneschi, J. Drechsler, and M. Mezini, “Towards Distributed
Reactive Programming,” Proc. Int’l Conf. Coordination Models and
Languages, 2013, pp. 226–235.

s5sal.indd 57 8/7/14 1:41 PM

58 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: PROGRAMMING LANGUAGES

Towards Unified
Programming with
Implicit Flows
The two families of programming
languages and language extensions
considered in the previous sections
share a new paradigm for processing
data: implicit data flows “through”
computations. While the two thrusts
currently still emphasize different
settings and requirements—low-
latency in-memory processing on
one or a few nodes with small data
volumes for reactive programming,
and high throughput processing of
large datasets distributed across
many nodes for big data analysis—
confluences are starting to emerge:

• Approaches in each family are
extended with features character-
istic of the other family. Spe-
cifically, implicit propagation of
changes in reactive programming
is generalized from simple values
to data collections and from local
to distributed computations; sup-
port for incremental and iterative
computations is being added to
big data analytics approaches.

• Approaches with uniform ab-
stractions for processing het-
erogeneous stored and online
data sources are emerging. The
reactive extensions (Rx)10 of
.NET represent a library-based
approach to modeling complex

event and stream processing by
LINQ operators,11 which are also
used for stored data processing;
following DEDUCE,12 Shark
combines MapReduce,13 designed
for stored data analysis, with sup-
port for processing online data.

These first steps are promising,
but there’s a need for a much stronger
confluence. We believe that modern
applications would benefit from inte-
grating time-changing values (signals
and big data processing abstractions)
and making them composable. To en-
able such compositions, we need to
conciliate propagation of changes on
both immutable data in the style of

PROGRAMMING WITH BIG DATA
Several programming languages and models are similar in
spirit to Pig Latin. FlumeJava is a library for data-flow pro-
cessing in Java proposed by Google1 and also implemented
by Apache Crunch.2 FlumeJava compiles corresponding tasks
to MapReduce jobs at runtime. Like the early Dryad language3
or Pig Latin, the model comes with standard operators for
joining data flows but also supports application-defined
functions. The following implements a simple word count in
FlumeJava:

1 PCollection<String> lines =
2 readTextFileCollection(input_file);
3 PCollection<String> words = lines.parallelDo(
4 new LineToWordFunction<String, String>(),
5 collectionOf(strings()));
6 PTable<String, Long> wordCounts = words.count();
7 wordCounts.write(output_file);

First the program reads the input_file as a text file, and
then, with some degree of parallelization chosen by the run-
time, parses lines, generating a collection of strings. Next the
program creates a table indexed by words, with the counts
for the respective words, before, finally, writing the table to
output_file.

Early innovators in terms of incremental and iterative
computation were the Incoop4 and iHadoop5 extensions of
Hadoop, respectively. Recent examples of data-processing
models supporting these two features by storing data in
main memory include distributed arrays in Presto6 or resilient

distributed datasets in Spark.7 Incremental computation is
thus far not supported by FlumeJava or Crunch; in the word
count example, incremental computation would consist of
augmenting the word counts’ output to output_file follow-
ing the order of the program, upon extensions to input_file.
With an in-memory representation of the wordCounts table, it
would suffice to apply the previous stages to any lines added
to the input_file and subsequently adding the corresponding
new word counts to existing ones in wordCounts, or creating
new entries to the table for words that previously weren’t
encountered.

References
 1. C. Chambers et al., “FlumeJava: Easy, Efficient Data-Parallel Pipe-

lines,” Proc. ACM SIGPLAN Conf. Programming Language Design and
Implementation, 2010, pp. 363–375.

 2. “Incubator Crunch,” Apache Software Foundation, 2013; http://
incubator.apache.org/projects/crunch.html.

 3. M. Isard et al., “Dryad: Distributed Data-Parallel Programs from
Sequential Building Blocks,” SIGOPS Operating System Rev., vol. 41,
2007, pp. 59–72.

 4. P. Bhatotia et al., “Incoop: MapReduce for Incremental Computa-
tions,” Proc. 2nd ACM Symp. Cloud Computing, 2011, article no. 7.

 5. E. Elnikety, T. Elsayed, and H. Ramadan, “iHadoop: Asynchronous
Iterations for MapReduce,” Proc. 3rd Int’l Conf. Cloud Computing
Technology and Science, 2011, pp. 81–90.

 6. S. Venkataraman et al., “Using R for Iterative and Incremental
Processing,” Proc. 4th Usenix Conf. Hot Topics in Cloud Computing,
2012, p. 11.

 7. M. Zaharia et al., “Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-memory Cluster Computing,” Proc. 9th Usenix Conf.
Networked Systems Design and Implementation, 2012, p. 2.

s5sal.indd 58 8/7/14 1:41 PM

SEPTEMBER/OCTOBER 2014 | IEEE SOFTWARE 59

Reactive Animation,” Proc. 2nd ACM
SIGPLAN Int’l Conf. Functional Pro-
gramming, 1997, pp. 263–273.

 8. S. Ghemawat, H. Gobioff, and S.-T. Leung,
“The Google File System,” Proc. 19th
ACM Symp. Operating Systems Principles,
2003, pp. 29–43.

 9. C. Olston et al., “Pig Latin: A Not-so-For-
eign Language for Data Processing,” Proc.
ACM SIGMOD Int’l Conf. Management
of Data, 2008, pp. 1099–1110.

 10. J. Liberty and P. Betts, Programming
Reactive Extensions and LINQ, 1st ed.,
Apress, 2011.

 11. E. Meijer, B. Beckman, and G. Bierman,
“LINQ: Reconciling Object, Relations and
XML in the .Net Framework,” Proc. ACM
SIGMOD Int’l Conf. Management of
Data, 2006, p. 706.

 12. V. Kumar et al., “DEDUCE: At the Inter-
section of MapReduce and Stream Process-
ing,” Proc. 13th Int’l Conf. Extending
Database Technology, 2010, pp. 657–662.

 13. R. Xin et al., “Shark: SQL and Rich Analytics
at Scale,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, 2013, pp. 13–24.

US Defense Advanced Research Projects
Agency, grant number #N11AP20014.

References
 1. P. Eugster and R. Guerraoui, “Distributed

Programming with Typed Events,” IEEE
Software, vol. 21, no. 2, 2004, pp. 56–64.

 2. V. Gasiunas et al., “EScala: Modular Event-
Driven Object Interactions in Scala,” Proc.
10th Int’l Conf. Aspect-Oriented Software
Development, 2011, pp. 227–240.

 3. G. Salvaneschi and M. Mezini, “To-
wards Reactive Programming for
Object- Oriented Applications,” Trans.
Aspect-Oriented Software Development
XI, LNCS 8400, Springer, 2014, pages
227–261.

 4. P. Eugster and K. Jayaram, “EventJava: An
Extension of Java for Event Correlation,”
Proc. 23rd European Conf. Object-Ori-
ented Programming, 2009, pp. 570–594.

 5. M. Hirzel et al., “IBM Streams Processing
Language: Analyzing Big Data in Motion,”
IBM J. Research and Development, vol.
57, nos. 3/4, 2013, article no. 1.

 6. B.A. Myers et al., “The Amulet Environ-
ment: New Models for Effective User
Interface Software Development,” IEEE
Trans. Software Eng., vol. 23, no. 6, 1997,
pp. 347–365.

 7. C. Elliott and P. Hudak, “Functional

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

GUIDO SALVANESCHI is a postdoctoral researcher at Tech-
nische Universität Darmstadt. He’s interested in programming
languages, reactive programming, event-based programming,
and languages for adaptive systems. Salvaneschi received a
PhD in computer science from Politecnico di Milano. Contact
him at salvaneschi@cs.tu-darmstadt.de.

MIRA MEZINI is a professor of computer science at Tech-
nische Universität Darmstadt. Her research interests include
programming languages and software development paradigms/
tools, adaptable software architectures, software product-line
engineering, and service-oriented architectures. Mezini received
a PhD in computer science from the University of Siegen.
She has served as the general and program chairs of several
software engineering and programing language conferences
and regularly serves on their program committees. Contact her
at mezini@informatik.tu-darmstadt.te.

PATRICK EUGSTER is an associate professor in computer
science at Purdue University, on leave for Technische Universität
Darmstadt. He’s interested in distributed systems and program-
ming languages. Eugster received a PhD in computer science
from EPFL. He’s a recipient of the NSF Career Award (2007)
and an ERC Consolidator Award (2012); he’s also a member of
DARPA’s Computer Science Study Panel. Contact him at p@
cs.purdue.edu.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

FRP and mutable data characteristic
of big data processing. Fine-grained
changes over mutable data structures
are an instance of a more general
problem requiring further advances
in incrementalization techniques. The
database community has studied this
for a long time under the label of view
maintenance. More recently, research-
ers have applied incremental solutions
to specifi c programming domains,
such as incremental collections. How-
ever, attempts to incrementalize a
generic program are just beginning.
Beside incrementalization, language
integration of uniform abstractions
for implicit data fl ows could en-
able optimizations across data-fl ow
graphs, offering opportunities to ap-
ply compiler optimizations such as in-
lining, partial evaluation and staging,
loop fusion, and deforestation.

T he itegration of reactive pro-
gramming and big data anal-
ysis poses several challenges

related to the composition of hetero-
geneous data management and pro-
cessing strategies. It could require ad-
vanced module concepts and related
type systems to express functionality
that abstracts over a whole range of
processing strategies as well as differ-
ent data sources or sinks. A key chal-
lenge is to reconcile fl exibility with
static typing to reduce runtime er-
rors. This aspect is especially impor-
tant in the context of big data, where
a failure can propagate across depen-
dent computations and invalidate
processing already performed.

Acknowledgments
This work has been supported by the
German Federal Ministry of Education
and Research (BMBF) under grant num-
ber 16BY1206E, the European Research
Council, grant number 321217, the Alex-
ander von Humboldt foundation, and the

s5sal.indd 59 8/7/14 1:41 PM

